Reactions of Diaminophosphenium and 1,3,2-Diazaphospholenium Triflates with Silver Salts*

Dietrich Gudat^{*a}, Andreas W. Holderberg^a, Sirpa Kotila^b, and Martin Nieger^a

Anorganisch Chemisches Institut der Universität Bonn^a, Gerhard-Domagk-StraBe 1, D-53121 Bonn

Organisch-Chemisches Institut der Universität Münster^b, CorrensstraBe 40, D-48149 Miinster

Received November 14, 1995

Key Words: Phosphenium cations / Silver complexes / 31P,109Ag NMR shift correlation

Reaction of **bis(diisopropy1amino)phosphenium** triflate $(1[CF₃SO₃]$) with silver salts AgY $[Y^{-} = CF₃CO₂⁻ (2a)$, CF₃- SO_3^- (2b), $CH_3CO_2^-$ (2c)] affords neutral complexes $[(iPr_2N)_2(Y)P]$ Ag(OSO_2CF_3)] **(3a-c)**. While **3a, c** are stable up to ambient temperature, **3b** is only stable at low temperature and in equilibrium with the cation **1.** The constitution of 3a-c was derived from multinuclear (¹H, ¹³C, ³¹P, ¹⁰⁹Aq) NMR spectra. Compound **3a** was further studied by X-ray single-crystal diffractommetry which showed the presence of dimeric units with μ^2 -bridging triflate ligands and three-coordinate silver atoms with a planar T-shaped coordination geometry. Reaction of 4-chloro-1,3-bis(2,6-dimethylphenyl)-**1,3,2-diazaphospholenium** triflate (4[CF3S03]) with **2a, c** affords equilibrium mixtures whose ^{31}P - and ^{109}Ag -NMR spectra suggested the presence of silver complexes **5a, c** with constitutions similar to those of **3a, c** besides unreacted cation 4. No reaction was observed between $4[CF₃SO₃]$ and 2b. A common mechanism accounting for the different outcome of the individual reactions will be discussed.

The ability of phosphenium ions R_2P^+ to form stable cationic transition-metal complexes of type **I** has long been recognised $[1]$. Considering that the free cations are isoelectronic and isolobal with neutral carbenes, the complexes **I** share the same relation with the carbene complexes **I1** which are of considerable importance in organic and organometallic chemistry[2].

Scheme **¹**

However, whereas carbene complexes are known for most d-block transition metals, examples of phosphenium complexes have hitherto been restricted mainly to group 6 (Mo, w) and group **8** (Fe) metals; lately, a single nickel phosphenium complex was reported $[3]$. The recently renewed interest in carbene complexes of the coinage metals $[4,5]$ stimulated us to investigate if similar phosphenium complexes of these metals can be obtained. Knowing that many phosphorus ligands form stable coordination compounds with $Ag⁺$, we studied the reactivity of stable diaminophosphenium and 1,3,2-diazaphospholenium cations^[6] (which can be regarded as the isolobal and isoelectronic counterparts to the stable imidazoyl carbenes^[7]) towards silver salts $AgY (Y = CF_3SO_3^-$, $CF_3CO_2^-$, $CH_3CO_2^-$).

Reactions

Reaction of **bis(diisopropy1amino)phosphenium** triflate $(1[CF₃SO₃])^[8]$ with one equivalent of $CF₃CO₂Ag$ (2a) in CH_2Cl_2 afforded according to an $^{31}P\text{-NMR}$ spectroscopic assay a single product which was isolated in moderate yield as colourless, air- and moisture-sensitive crystals. The product was identified by NMR spectroscopy and by X-ray crystal structure analysis as the phosphane complex **3a** featuring a four-coordinate phosphorus centre, rather than an anticipated three-coordinate phosphenium complex. In contrast to the known behaviour of phosphanes and phosphites^[9,10], no evidence for the formation of complexes of the type $[Ag(PR₃)_n]⁺$ $(n > 1)$ was obtained when **3a** was treated with an excess of phosphenium salt.

Similar reactions as with $CF₃CO₂Ag$ were observed with $1[CF_3SO_3]$ and CF_3SO_3Ag **(2b)** or CH_3CO_2Ag **(2c).** An $31P-NMR$ spectroscopic assay of the reaction of equimolar amounts of the phosphenium salt and **2b** disclosed a marked temperature dependence of the spectra which suggested that a dynamic mixture of several equilibrating components had formed. Spectra under slow exchange conditions revealed at -110° C the presence of a mixture of 1 and a second species which displays very similar **31P-** and '09Ag-NMR spectra as **3a** and was therefore assigned to the complex **3b** (Scheme 2). The relative signal intensities changed when the molar ratios of the reactants were varied, but no further products could be identified, and free **1** was still observed even in the presence of a twofold excess of the silver salt. The complex $3b$ was isolated $-$ albeit in low

 \mathbf{z}_c , \mathbf{z}_c , \mathbf{z}_c

 $CH₂CO₂$

yield and in an impure form $-$ by crystallisation from the reaction mixtures at -80° C.

Treatment of $1[CF_3SO_3]$ with one equivalent of $CH₃CO₂Ag$ furnished a mixture of two different silver complexes in a 9:1 molar ratio which were identified by multinuclear NMR spectroscopy as **3c** (major product) and **3c'** (Scheme 2). Unlike the previous reaction, no free **1** was detected by 31P-NMR spectroscopy. Attempts at isolation of **3c, C'** failed due to the rapid onset of decomposition.

Scheme *2*

In contrast to the acylic phosphenium salt, the 1,3,2-diazaphospholenium triflate **4[CF,S03])** which was prepared according to the procedure reported by Pudovik et al.^[6] gave no detectable reaction with CF_3SO_3Ag between -100 and +30 °C. Treatment with CF_3CO_2Ag and CH_3CO_2Ag , which contain more nucleophilic anions, furnished solutions whose NMR-spectroscopic assay revealed the presence of equilibria between free 4 and silver complexes whose constitutions were assigned as **5a, c** based on the similarity of the observed NMR data to those of **3a-c** (Scheme 3). A remarkable feature of the reaction of $4[CF₃SO₃]$ with $CH₃CO₂Ag$ is that NMR spectra recorded at $-100\degree$ C revealed the formation of a mixture of altogether five different silver complexes whose strongly overlapping $3^{1}P\text{-NMR}$ signals could only be resolved in a ${}^{31}P,{}^{109}Ag$ correlated 2D spectrum. Due to both thermodynamic and kinetic instability, the formed complexes could not be isolated and were only characterised in situ by their $31P$ - and $109Ag-NMR$ data (Table 1).

X-ray Crystal Structure of 3a

Complex **3a** crystallises in the space group *Pi* with one formula unit per unit cell. The crystals contain dinuclear

466

Scheme 3

complexes which are formed by aggregation of two molecules of **3a** via additional "intermolecular" Ag-0 bonds to give centrosymmetric dimers with a central $Ag_2S_2O_4$ eight-membered ring (Figure 1). As a result of the association, each triflate anion acts as an asymmetric $\mu^2-(\eta^1-O,\eta^1-O)$ O'jbridging ligand, and the silver atoms are three-coordinate. Both the two $Ag-O$ bond lengths and the $P-Ag-O$ angles differ considerably, the shorter "intramolecular" Ag-O(1) bond $[2.244(3)$ Å forming a larger angle [156.0(1)^o] with the P-Ag bond and vice versa $[Ag-O(2A)]$ 2.416(3) Å, $P-Ag-O(2A)$ 117.7(1)^o]. This leads to an effectively planar [sum of angles 358.6(3)"], T-shaped coordination geometry at silver with very similar features as found previously in dinuclear complexes of the type $[(\mu^2 L-L)Ag(\mu^2-RCO_2)$ ₂ $(\mu^2-L-L = \text{bridging} \text{bisphos-}$ phane)^[11], and in the cationic complex $[(L^{\prime +})$ - $(thf)(CF₃SO₃)$ Ag] $(L⁺ = bis(triphenylphosphonio)$ isophosphindole)^{$[12]$}. As expected, the phosphorus in **3a** is connected to Ag, $N(1)$, $N(2)$, and the $O(1)$ oxygen of the trifluoroacetate. The P-Ag $[2.349(1)$ Å] and P-N bonds $[1.627(3)$ and $1.663(3)$ A are somewhat shorter as those in $[{({\rm Me}_2N)_3P}_2Ag]^+$ [2.392-2.394 Å (P-Ag), 1.651-1.677 A $(P-N)^{[9]}$. The P-O(4) bond [1.707(2) A] is longer than expected $[r(P-O)$ in phosphite complexes is in the range 1.60 ± 0.01 A^[13]], and while the O(1)-P-N(1)/N(2) angles [93.9(1) and $103.8(1)$ ^o] are smaller than the tetrahedral angle of 109.4°, the Ag-P-N(1)/N(2) angles are enlargened to $118.2(1)$ and $119.6(1)$ °. On the whole, the geometry at phosphorus appears as a distorted tetrahedron and resembles a very early state in a hypothetical reaction involving the conversion of a neutral tertiary phosphane complex into a cationic phosphenium complex via cleavage of the trifluoroacetate anion. A similarly distorted tetrahedral coordination was reported for the four-coordinatc silicon atoms in donor-stabilised silylene complexes of the type $(CO)_nM \leftarrow SiR₂\leftarrow HMPT^[14], suggesting that 3a may be like$ wise formulated as a Lewis acid/base complex of a cationic phosphenium complex with a trifluoroacetate anion.

NMR-Spectroscopic Investigations

Characterisation of **3a-c'** by 31P,109Ag shift-correlated 2D-NMR spectroscopy^[15] revealed the presence of AX spin systems $(A = {}^{31}P, X = {}^{109}Ag)$ in $3a-c$ and an A_2X spin

Figure 1. ORTEP view (50%-probability ellipsoids) of crystalline
3a^[a]

La] Selected bond lengths [A] and angles ["I: Ag-P 2.3489(11). Ag-O(1) 2.244(3), Ag-O(2A) 2.416(3), P-N(1) 1.627(3), P-N(2) 1.663(3), P-0(4) 1.707(2); P-Ag-O(l) 156.03(7), P-Ag-O(2A) 117.75(7), O(l)-Ag-O(ZA) 84.84(10), N(1)-P-Ag 118.23(10), $N(2)-P-Ag$ 119.63(11), $N(1)-P-N(2)$ 106.38(14), $O(4)-P-N(1)$ $103.84(13)$, $O(4) - P - N(2)$ 93.93(13).

system in **3c',** thus indicating that the products may be formulated as 1:1 and 2:1 complexes with an "AgP" $(3a-c)$ or "AgP2" core **(3c').** The occurrence of AX spin systems associated with an "AgP" core was also established for the three components of highest abundance formed in the reaction of $4[SO_3CF_3]$ with CH_3CO_2Ag ; a multiplicity analysis of the signals of the two remaining components was in this case prevented by unsuficient signal-to-noise ratio.

Table 1. ³¹P- and ¹⁰⁹Ag-NMR data of the silver complexes $3a-c'$, **5a, 5c** (in CH_2Cl_2)

	T [°C]	<u>አ31p</u>	δ^{109} Ag	$1J109_{Ag,31p}$
3a	-80	103.2	400.1	1140
3b	-110	121.3	433	1116
3c	-40	93.0	385	1191
3c'	-40	98.5	560	814
5a	-110	91.6	. [a]	1040 [b]
5c	-110	86.1	469	1119
		85.3	488	1013
		86.2	533	1004
		85.3	539	975
		84.6	542	999

^[a] Not determined. - ^[b] $0.5 \cdot [J(^{107}Ag, ^{31}P) + J(^{109}Ag, ^{31}P)].$

The observed 31P-NMR data of all silver complexes (Table 1) bear close similarity to those of $[\{({\rm Me}_2{\rm N})_3{\rm P}\}{\rm AgBF}_4]$ [δ^{31} P 121.5, $J(^{109}{\rm Ag}, ^{31}{\rm P})$ 1047 Hz]^[9], suggesting that phosphane complexes with a four-coordinate phosphorus centre are present. In accord with this hypothesis is the observed diastereotopy of the methyl groups of the diisopropylamino substituents in the ${}^{1}H$ - **(3a–c')** and ¹³C-NMR **(3a)** spectra of $3a-c'$, which definitely rules out a planar three-coordination at phosphorus. **A** direct proof for the attachment of the (trifluoro)acetate as the fourth substituent to phosphorus in **3a** and **3c, c'** was provided by the splitting of the carbonyl resonance in the 13C-NMR spectrum of **3a** and the 'H-NMR signal of the acetate protons in **3c, c'** due to coupling with one **(3a, c)** and two **(3c')** phosphorus nuclei, respectively. Even if the NMR data provided no positive evidence for a coordination of the remaining triflate anion to the silver atom, the results of the crystal structure analysis of **3a** suggest that this is most likely the case. The large magnitude of ${}^{1}J(^{109}Ag, {}^{31}P)$ and the high shielding of the silver nucleus in **3a** (see Table 1) as compared to known values for phosphane complexes $(\delta^{109}Ag = 410 - 1400^{[14]})$ suggest further than in solution dissociation^[9] of the dinuclear species observed in the solid state into monomeric complexes with a dicoordinated silver may be of importance.

Inspection of the "P-NMR spectra of **3a** and **3c, c'** indicated that no observable decomplexation of the phosphorus ligands occurred between -80 and 30° C, and that any exchange processes were slow on the NMR time scale below 0 "C. In contrast, a sharp resonance for the complex **3b** was only observable besides the signal of the cation 1 at temperatures below -110° C. Dynamic line broadening and finally coalescence of the two signals occurred when the temperature was successively increased to approx. -90° C. At still higher temperatures, again an unexpected splitting of the average signal into two new resonances was observed, one appearing as a broad line centred at $\delta = 107 \pm 3$, while the position of the other one exhibited a considerable temperature dependence $[\delta^{31}P = 120 (-70 °C), 235 (+30 °C)].$ The observed effects reveal that the solution must contain a mixture of several rapidly equilibrating components, however, since the ¹H- and ¹³C-NMR spectra above -90° C displayed only broad, unresolved average signals, no further structural elucidation was possible, and the nature of the individual species remains unknown.

The formation of several distinguishable 1:1 complexes in the reaction of $4[CF_3SO_3]$ with CH_3CO_2Ag can be explained by assuming the presence of an equilibrium between monomeric **Sc** and oligomeric aggregates. Owing to the chiral nature of the tetracoordinate phosphorus in the monomer, dimerisation affords two diastereomeric dinuclear complexes $(5c)_2$, thus accounting for three of the observed five products. The nature of the remaining species remains unclear; the assumption that they belong to "AgL2" complexes with a similar structure than **3c'** could not be ascertained from the 2D-NMR spectra.

Dicussion

The different outcome of the reactions of the cations **1** and 4 with the silver salts **2a-c** can be explained on the basis of the coupled equilibria depicted in Scheme 4. For pure $1[CF₃SO₃]$, equilibrium (i) lies completely on the left side, and the ionic form III prevails^[1,8]. The observed formation of $3a$ from $1[CF_3SO_3]$ and $2a$ suggests that coordination of the cation 1 to silver [reaction (iii)] enhances the electrophilic character of phosphorus to such a degree that recombination of a ionic complex of type **V** affording the covalent product **VI** [reaction (iv)] is energetically favoured regardless of the low nucleophilicity of the triflate anion. Since stronger nucleophiles (e.g. Cl^- , acetate) shift equilibrium (i) to the right side even without the assistance of a transition metal, the reactions of $I[CF₃SO₃]$ with **2b**, c may

as well proceed via initial formation of the covalent intermediates **IV** [reaction (i), $X^- = CH_3CO_2^-$, $CF_3CO_2^-$] and subsequent coordination of a silver ion [reaction (ii)].

Scheme 4

Due to the delocalisation of the positive charge in the ring system^[6], 1,3,2-diazaphospholenium ions are less electrophilic than diaminophosphenium ions^[16]. As a consequence, a less pronounced tendency of the ionic species **I11** and **V** towards the formation of the covalent products *JY* and **V1** can be expected, which would provide a consistent explanation for the incomplete conversion of **4** into the diazaphospholene complexes **5a, c** even in the presence of an excess of AgY. The failure to observe a reaction between $4[CF₃SO₃]$ and $CF₃SO₃Ag$ further suggests that equilibrium (iii) lies far on the left side, confirming that the studied cations are much weaker ligands towards Ag+ than tertiary phosphanes.

Conclusions

In essence, the reported results demonstrate that the nature of the product of the reaction of a phosphenium salt with a transition metal is essentially determined by the way how the increased electron deficiency at phosphorus, which results from the formation of the dative phosphorus-metal bond, is compensated for. Thus, the capacity of the ML_n fragment to provide "intramolecular" electron transfer to phosphorus via back bonding from filled d-orbitals appears to be the decisive factor for the stability of known cationic phosphenium complexes **I** (Scheme 1). For metals with insufficient back bonding capabilities (Ag^+) , "intermolecular" stabilisation is achieved by capture of an anion, resulting in the formation of neutral complexes which are structurally related to donor stabilised silylene complexes of the type $(CO)_4Fe \leftarrow SiR_2 \leftarrow HMPT^{[14]}$. To emphasise once more the analogy between phosphenium and carbene complexes, the metal-assisted association of 1 and $CF_3SO_3^-$ to give **3b** can be considered as the reversal of a "metal-assisted ionisation" of a carbenoid^[17].

Financial support from the *Deutsche Forschungsgemeinschaft* and the *Fonds der Chemischen Industrie* is gratefully acknowledged. **S. K.** thanks the *Finnish Academy* for a grant.

Experimental

All manipulations were carried out under dry argon. Solvents were dried by using standard procedures. Silver salts were commercially available and were vacuum-dried prior to use. The synthesis of **1** [CF,SO,][*] was described elsewhere. **2-Chloro-1,3-bis(2,6-dimethylphenyl)-1,3,2-diazaphospholene (6)** was prepared in 45%) yield [m.p. 120°C, ³¹P NMR (CII₂Cl₂): $\delta = 146.8$. Cl8HI9CI2N2P (365.24): cdlcd. C 59.19, **TI** 5.24, N 7.67; found C 59.08, H 5.19, N 7.621 in analogy to the method described by Pudovik et al.^[18] for the 1,3-dicyclohexyl-substituted derivative. $-$ NMR: Bruker AMX 300 (IH: 300.13 MHz, 13C: 75.46 MHz, I'N: 30.41 MHz; 31P: 121.5 MHz, lo9Ag: 13.97 MHz) and **AC** 200 (19F: 188.4 MHz). ¹⁰⁹Ag chemical shifts and multiplicities of Ag_nP_m spin systems were dctcrmined from ${}^{31}P$ -detected ${}^{31}P, {}^{109}Ag$ HMQC spectra by using published pulse sequences^[15]. Chemical shifts were referenced to ext. TMS (1 H and 13 C), CFCI₃ (19 F), CH₃NO₂ (15 N, $E = 10.136767 \text{ MHz}$, $85\% \text{ H}_3PO_4(^{31}P, \Xi = 40.480747 \text{ MHz}$, and Ag⁺ (¹⁰⁹Ag, Ξ = 4.653623 MHz); a positive sign denotes a shift to lower frequencies. Coupling constants are given as absolute values. - **MS:** Kratos Concept 1 H, EI (70 eV); niolecular masses refer to the most abundant isotopes. $-$ Melting points were determined in sealed capillaries.

General Procedure for the Reaction of I[CF₃SO₃] with Silver Salts AgY (2a-c): 1.0 mmol of $1[CF₃SO₃]$ and the appropriate amount of silver salt $(0.5-2.0$ equivalents) were dissolved in 8 ml of CH_2Cl_2 . After stirring for $0.5-1$ h, the resulting solution was subjected to multinuclear $({}^{1}H, {}^{31}P,$ and two-dimensional ${}^{31}P, {}^{109}Ag)$ NMR studies at temperatures between -120 and $+30$ °C. Reactions of 1[CF3S03] with equimolar amounts of **2a, c** proceeded with quantitative formation of the complexes **3a, c, c'.** Except for some line broadening resulting from intermolecular ligand exchange, no significant changes were observed between -80 and +30°C. Reaction with 2b yielded a mixture of 1 and 3b $(-110^{\circ}C)$; the temperature dependence of the ³¹P-NMR spectra was described (see text). While **3a, b** could be isolated under suitable conditions (see below), **3c, c'** were only characterised in sitn: 'H NMR (CH₂Cl₂, -40^oC): **3c**: **3.61** [m, 4H, $J(H,H) = 7$ Hz, $J(P,H) = 15$ $J(H,H) = 7$ Hz, 6H] and 1.23 [d, $J(H,H) = 7$ Hz, 6H] (NCCH₃); **3c':** 2.21 [dd, $|J(P,H) + J(P',H)| = 3 Hz$, CH₃CO₂], the resonances of the C3H7 residue are overlapped by the more intense lines of **3c.** - **31P-** and Io9Ag-NMR data are listed in Table 1. Hz, NCH], 2.18 [d, $J(P,H) = 2$ Hz, $3H$, CH_3CO_2], 1.26 [d,

(Bis!diisopropylamino) tri\$'uorucelalophosphane]! trifluorowrethune $sulfonato/silver(I)$ **(3a)**: 380 mg (1.0 mmol) of $I[CF₃SO₃]$ and 221 mg (1.0 mmol) of CF₃CO₂Ag (2a) were dissolved in 8 ml of $CH₂Cl₂$. The resulting light yellow solution was stirred for 1 h, then cooled to -30° C and kept at this temperature for several days. The separated crystals were collected by filtration and dried carefully in vacuo. Compound **3a** was obtained in approx. 30-40% yield as colourless, extremely air- and moisture-sensitive crystals which turned immediately black upon contact with air. Due to the extreme senstivity of the product satisfactory elemental analyses could not be obtained. ³¹P{¹H}- and ¹⁰⁹Ag-NMR data are listed in Table 1. - ¹H NMR (CH₂Cl₂, 0°C): 3.5 [m, 4H, ³J(H,H) = 6.9 Hz, $3J(P,H) = 14$ Hz, CH], 1.1 [d, 6H, $3J(H,H) = 6.9$ Hz] and 1.06 154.6 [d, ² $J(P,C) = 43.2$, CO], 120.0 [q, ¹ $J(F,C) = 318.3$ Hz, SCF₃], PNCH], 23.8 [d, $3J(P,C) = 4.9$ Hz] and 22.6 (s) (CH₃). $-$ ¹⁹F NMR $[d, 6H, {}^{3}J(H,H) = 6.9 \text{ Hz}](CH_{3})$. - ${}^{13}C({}^{1}H)$ NMR (CH₂Cl₂, 0^oC) 114.0 $[q, {}^{1}J(F,C) = 286.2$ Hz, CCF₃, 46.9 $[d, {}^{2}J(P,C) = 8.4$ Hz, $(CH_2Cl_2/CDCl_3, 20°C$: -76.2 (CCF₃), -78.2 (SCF₃).

[Bis(diisopropylamino) trifluoromethanesulfonatophosphane]-(trifluoromethanesulfonato)silver(I) **(3b)**: 380 mg (1.0 mmol) of $I[CF₃SO₃]$ and 257 mg (1.0 mmol) of $CF₃SO₃Ag$ were allowed to react as described. The solid which separated after storage of the solution at -80° C for several days was collected by filtration and dried in vacuo to give a white, crystalline product which exhbited a similar sensitivity towards moisture and air as 3a. A 'H-NMR spectroscopic assay showed that the isolated product contained 5-10% of $[iPr_2NH_2][CF_3SO_3]$ which was apparently formed by partial hydrolysis of 3a and could not be separated. ^{31}P - and ^{109}Ag -NMR data of 3a are listed in Table 1. - ¹H NMR (CH₂Cl₂, -110° C): 3.60 (m, broad, 4H, NCH), 1.25 [d, $J(H,H) = 7$ Hz, 12H] and 1.23 [d, $J(H,H) = 7$ Hz, 12H] (CH₃). - ¹⁹F NMR $(CH_2Cl_2, 20°C)$: -77.8.

4- *Chloro-l,3-bis(2,6-dimethylphenyl)* -I *,3,2-diazaphospholeniurn Trifluoromethanesulfonate* $(4[CF₃SO₃)]$: 4.00 g (18 mmol) of $CF₃SO₃SiMe₃$ was added by means of a syringe to a solution of 6.41 g (18 mmol) of 6 in 16 ml of CH₂Cl₂. After stirring for 1 h, all volatile components were removed in vacuo. The residue was dissolved in 30 ml of $CH₂Cl₂$, and the product precipitated by addition of hexane. The precipitate was collected by filtration, washed twice with 10 ml of hexane and dried in vacuo. $4[CF_3SO_3]$ was obtained in 85% yield as a colourless, microcrystalline solid which was extremely moisture-sensitive and decomposed rapidly upon contact with air. Due to the high sensitivity no satisfactory elemental analyses were obtained. - M.p. 172 °C (dec.). $-$ ³¹P{¹H} NMR 7.40-7.10 (m, 6H, C_6H_3), 2.24 (s, 6H) and 2.17 (s, 6H) (CH₃). - ${}^{13}C{^1H}$ NMR (CDCl₃): 135.71 [d, $J(PC) = 3.8$ Hz] and 134.52 [d, $J(PC) = 3.7$ Hz] *(i-C, arom.), 134.46 [d, J(P,C) = 5.8 Hz*] and 131.14 [d, $J(P,C) = 6.7$ Hz] (o-C, arom.), 133.59 [d, $J(P,C) = 1.6$ Hz, =CH-1, 132.15 (d, $J(P,C) = 1.2$ Hz) and 131.69 [d, $J(P,C) =$ 1.0 Hz] (*m*-C, arom.), 131.90 (s, =CCl-), 130.01 (s, *p*-C, arom.), 120.84 **[q,** $J(F,C) = 320.6$ Hz, CF_3], 18.27 **[d,** $J(P,C) = 1.3$ Hz] and (CH_2Cl_2) : 202.5; ¹H NMR (CDCl₃): 8.10 **(s, 1H, =CH-)**, 18.02 [d, $J(P,C) = 1.7$ Hz] (CH₃). $-$ ¹⁵N NMR (CH₂Cl₂/C₆D₆): -151.2 [d, $\frac{1}{J(P,N)} = 76.7$ Hz], -154.7 [d, $\frac{1}{J(P,N)} = 79.3$ Hz]. $-$ ¹⁹F NMR (CDCl₃): $-77.8.$ - MS: *mle* $(^{96})$: 329 (4) [M]⁺, 134 (100) $[C_6H_3Me_2NCH_3]^+$.

General Procedure for ihe Reaction of 4[CF3S03] with Silver Salts AgY (2a-c): Reactions of $4[CF_3SO_3]$ with 2a-c were performed as described for $4[CF₃SO₃]$. According to the NMR spectra, reactions with 2a, c gave dynamic equilibrium mixtures whose low-temperature spectra $(-80 \text{ to } -110^{\circ}\text{C})$ revealed the presence of unreacted 4 together with products which were assigned to the silver complexes 5a, c (see text). Attempts to isolate any products by low-temperature crystallisation failed. No reaction at all was observed between $4[CF_3SO_3]$ and 2b.

Crystal Structure Determination of 3a *at 17312) K:* Colourless needles $[C_{30}H_{56}Ag_2F_{12}N_4O_{10}P_2S_2]$, $M = 1202.6$, crystal size 0.8 \times 0.4 \times 0.3 mm, triclinic, space group *P*¹ (No. 2): *a* = 8.323(3), *b* = 10.622(3), $c = 13.476(3)$ Å, $\alpha = 101.29(2)$, $\beta = 91.36(3)$, $\gamma =$ 92.70(3)°, $V = 1166.4(6)$ Å³, $Z = 1$, $p(\text{cald.}) = 1.712$ Mg m⁻³, $F(000) = 608$, $\mu = 1.10$ mm⁻¹. 5100 reflections were collected with an Enraf-Nonius MACH3 diffractometer *(Mo-K,* radiation, graphite monochromator) in the range $5^{\circ} \le 2\Theta \le 53^{\circ}$ ($-10 \le h$) ≤ 0 , $-13 \leq k \leq 13$, $-16 \leq l \leq 16$). 4755 independent reflections $(R_{int} = 0.022)$ were used for the solution (SHELXS-86, direct methods) and refinement [SHELXL-93, full-matrix least squares on F^2 , 288 parameters without restraints, non-hydrogen atom anisotropic, hydrogen atoms with a "riding"-modell; $wR^2 = 0.124$ (all data), $R = 0.039$ $[I > 2\sigma(I)]$. A semiempirical absorption correction from Y-scans was applied (max. and min. correction 0.999 and 0.980).

Further details on the crystal structure investigation are available on request from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, on quoting the depository number CSD-404668, the names of the authors, and the journal citation.

- * Dedicated to Professor Dr. *Marianne Batidler* on the occasion of her 75th birthday.
- ^[1] Review: M. Sanchez, M.-R. Mazières, L. Lamandé, R. Wolf in *Multiple Bonds and Low Coordination in Phosphorus Chemistry* (Ed.: M. Regitz, 0. J. Scherer), G. Thieme Verlag, Stuttgart, 1990, 129-148.
- Lz] see: H.-G. Schmalz, *Angew Chem.* 1994, 106, 311-313; *Angew Chem. Inf. Ed. Engl.* 1994, *33,* 303-305, and cit. lit.
- c31 R. Oberdorfer, M. Nieger, E. Niecke, *Client Bcr.* 1994, 127, 2397-2401.
- I4I A. J. Arduengo, H. **V.** Rasika Dias; J. C. Calabrese, F. Davidson, *Organometallics* 1993, *12,* 3405-3409.
- **f51** H. G. Raubenheimer, **S.** Cronje. P. H. van Rooycn, €? J. Olivier, J. G. Toerien. *Angew. Chem.* 1994.106. 687-688: *Anaew. Chem.* , **<I** *Int. Ed. Engl.* 1994, 33, 672-673
- **L61** I. A. Litvinov, **V.** A. Naumov, T. **V.** Grvaznova. A. N. Pudovik. **A.** M. Kibardin, *Dokl. Akad.~ Nauk SSSR* 1990,312, 623-625:
- [71 A. J. Arduengo, R. L. Harlow, M. Kline, *J. Am. Chenz. Soc.* 1991, 113, 361-363; **A.** J. Arduengo, H. V. Rasika Dias, R. L. Harlow, M. Kline, *J* Am. *Chem. Soc.* 1992, 114, 5530-5534.
- [*I M. R. Mazieres, C. Roques, **M.** Sanchez, J. P. Majoral, R. Wolf, *Tetrahedron* 1987, 2109-21 18.
- ['I **S.** M. Socol, R. A. Jacobson, **J.** G. Verkade, *Inorg. Chem.* 1984, 23, 88-94.
- ['I P. Granger in *Trunsition Metal Nuclear Magnetic Resonance* (Ed.: P. **S.** Pregosin), Elsevier, Amsterdam 1991, 264ff.
- [11] [11a] T. S. A. Hor, S. P. Neo, C. T. Tan, T. C. W. Mak, K. W. P.
Leung, R. J. Wang, *Inorg. Chem.* **1992**, 31, 4510. $-$ ^[11b] S. P.
Neo, Z.-Y. Zhou, T. C. W. Mak, T. S. A. Hor, *Inorg. Chem.* 1995, *34,* 520-523.
- [I2] D. Gudat, M. Schrott, **V.** Bajorat, M. Nieger, **S.** Kotila, R. Fleischer, D. Stalke, *Cheni. Bev.* 1996. 129, 337-345.
- **'I3]** B. F. Allen, 0. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor in *Inrernafional Tables for Crystallography* (Ed.: A. J. C. Wilson), Vol. C, Kluwer Academic Publishers, Dordrecht, 1992, 685ff.
- C. Zybill, G. Muller, *Angew Chem.* 1987, 99, 683-684; *Angew Chem. Int. Ed. Engl.* **1991,** 26, 669-670. [14h1 C. Zy-[I4] bill, G. Muller, *Organometallics* 1988, *7,* 1368- 1372.
- [''I D. L. Nanz, W. v. Philippsborn, *J. Map. Reson.* 1991, 92, 560-571.
- ^[16] Calculated (HF/6-31g^{*} level of theory) values of $-(\varepsilon_{\text{HOMO}} +$ ϵ_{LUMO} /2, which may be related to the absolute electronegativity in the frame of the HSAB concept (cf.: R. G. Pearson, *J Chem. Ed* 1987, 64, 561-567), were 9.06 eV for the parent 1,3,2-diazaphospholenium cation, and 10.88 eV for $(H_2N)_2P^+$ indicating a stronger electrophilic character for the latter (D. Gudat, unpublished results).
- [I7] M. Duraiiamy, H. M. Walborsky, *J Am. Chem.* Soc 1984, 106. 5035-5037.
- ['*I A. M. Kibardin, **I.** A. Litvinov, V. **A.** Naumov, Yu. **T.** Struchkov, T. V. Gryaznova, Yu. B. Mikhailov, A. N. Pudovik, *Dokl. Akad. Nauk SSSR* 1988. *298.* 369-373.

[95 1821